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Abstract 

An overview is presented of scale problems in groundwater flow, with emphasis on upscaling of hydraulic conductivity, 
being a brief summary of the conventional upscaling approach with some attention paid to recently emerged approach-
es. The focus is on essential aspects which may be an advantage in comparison to the occasionally extremely extensive 
summaries presented in the literature. In the present paper the concept of scale is introduced as an indispensable part 
of system analysis applied to hydrogeology. The concept is illustrated with a simple hydrogeological system for which 
definitions of four major ingredients of scale are presented: (i) spatial extent and geometry of hydrogeological system, 
(ii) spatial continuity and granularity of both natural and man-made objects within the system, (iii) duration of the 
system and (iv) continuity /granularity of natural and man-related variables of groundwater flow system. Scales used 
in hydrogeology are categorised into five classes: microscale – scale of pores, mesoscale – scale of laboratory sample, 
macroscale – scale of typical blocks in numerical models of groundwater flow, localscale – scale of an aquifer/aquitard 
and regionalscale – scale of series of aquifers and aquitards. Variables, parameters and groundwater flow equations for 
the three lowest scales, i.e., pore-scale, sample-scale and (numerical) block-scale, are discussed in detail, with the aim 
to justify physically deterministic procedures of upscaling from finer to coarser scales (stochastic issues of upscaling 
are not discussed here). Since the procedure of transition from sample-scale to block-scale is physically well based, it is 
a good candidate for upscaling block-scale models to local-scale models and likewise for upscaling local-scale models 
to regional-scale models. Also the latest results in downscaling from block-scale to sample scale are briefly referred to. 
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1. Introduction

The concept of scale arises at the very first stage 
of system analysis. Irrespective of whether the sys-
tem itself is abstract or physical, its analysis always 
requires that some axiomatic assumptions be made 
as to its space-time extent and its continuity/granu-
larity. By defining the scale of the system, a scientist 
encapsulates his or her own experience, expertise 
or intuition concerning the given class of systems 
in a few primary concepts which can be understood 
by other people, or at least by some selected group 
of people. When 'the goal-seeking' definition of the 
system (Klir, 1969) is used, the space-time extent 
and continuity/granularity of the system’s objects 

are purposely defined, their attributes and the re-
lationships between the attributes so that some 
problem can be solved or some predefined goal 
achieved. The system approach and scale definition 
are especially useful when the system under con-
sideration is complex, e.g., when it contains a large 
number of physical objects having a spectrum of 
'sizes' and when relationships between these ob-
jects are a mixture of discrete and continuous inter-
actions. By assuming 'proper' scale and structure of 
the system the 'seek solution' to the problem may 
be ‘hit’, whereas by taking the 'wrong' scale the 
system’s behaviour and departure from the goal 
may not be explained. The issue is how to distin-
guish between 'proper' and 'wrong' scale attribut-
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ed to the problem. There is one familiar answer to 
this question – setting a scale for a given system or 
problem depends on prior knowledge, experience 
and intuition of the system. Usually, experience 
from the past is used when setting a scale for 'typi-
cal' systems. When confronted with 'new type' sys-
tems, however, an intellectual leap forward must be 
made; setting a scale for such cases is a kind of 'art'. 
At the present time, when information accessibility 
concerning any given discipline (and hence 'typical 
systems' of the discipline) is not restricted, 'the ex-
perience' can be understood as 'global knowledge'. 
Still, for problems or systems of 'new type' inven-
tion of new concepts in the systems’ scale definition 
may become necessary.

Definitely, hydrogeological systems are com-
plex Earth systems that require system approach 
and scale definition each time when theoretical is-
sues of groundwater flow or practical problems of 
groundwater resources are to be solved. The system 
approach to dynamic hydrogeological systems has 
been applied by many researchers and extensively 
presented in the literature. One of the first works 
was a monograph by Nawalany (1984) as well as 
the TNO Report (Nawalany, 1987). A chapter in 
which system analysis was devoted to hydroge-
ological systems can be found in the book by Zijl 
& Nawalany (1993), 'Natural Groundwater Flow'. 
Subsequently, Zijl also published a book (1993) and 
a paper (1999) on scale issues in hydrogeology. In 
this brief treatise, the system approach and scale 
definition are discussed as aspects of groundwater 
flow modelling and as part of procedures used for 
the assessment of parameters in hydrogeological 
models.

2. System aspects of groundwater flow 
modelling

When considering groundwater flow in porous 
or fissure rocks in the context of solving practi-
cal problems or answering theoretical questions, 
a number of axiomatic assumptions concerning 
scale and structure of the hydrogeological system 
is made in the hope that the physical-mathemati-
cal model based on these assumptions will allow 
to obtain the seek solutions or provide answers to 
the questions. Aspects of system analysis and scale 
concepts, chosen here for the sake of illustration, 
correspond to a simple case of groundwater flow 
in a single aquifer recharged with water from in-
filtration, seepage through aquitards or far-distant 
inflow from adjacent aquifers. There is also a gal-

lery of wells which abstract groundwater from the 
aquifer with the aim of supplying a community 
with a specified volume of water within the peri-
od of one year. The question is whether the given 
volume of groundwater can be abstracted from the 
aquifer safely, i.e., without overexploitation of the 
aquifer’s water resources. By considering this goal 
as guidance, an analysis of the hydrogeological sys-
tem commences from defining scale features of the 
groundwater flow model. Typically, the following 
features of the model that represents a given system 
are defined as follows:
 – spatial extent and geometry of the hydrogeological 

system. For instance, horizontal and vertical di-
mensions of an aquifer are specified together 
with the geometry of aquitards and other aqui-
fers that set (geometrical) limits to a given aq-
uifer. 

 – spatial continuity and granularity of natural and 
manmade objects within the systems. By attrib-
uting the concept of hydraulic conductivity to 
the given aquifer, it is specified whether the pa-
rameter may have discontinuities (and where) 
and how hydraulic conductivity does change 
in space (granularity). As to man-made objects, 
localisation and abstraction rate of wells in the 
gallery need to be specified.

 – time extent of the system. In this case a one-year 
period defines the duration of the system oper-
ation. It applies to all variables involved – infil-
tration, seepage through aquitards, far-distant 
inflow from adjacent aquifers and water abstrac-
tion by wells.

 – continuity/granularity of natural and man-related 
variables of the system. Specific discharge and pi-
ezometric head are assumed to be natural var-
iables continuous in time and space, whereas 
abstraction rates in wells may be discontinuous 
in time (e.g., wells can be switched off for main-
tenance). By modelling time changes of specific 
discharge and piezometric head within the aq-
uifer (system), the question if the water supplies 
from the gallery of wells at the given rate may 
lead to overexploitation of water resources of 
the aquifer, may be answered.
Typically, one of the five scale ranges can be 

considered when resolving hydrogeological issues 
through modelling groundwater flow. Depending 
of the formulation of the problem/question, hydro-
geologists may set their groundwater flow models 
within one of the following scales:
 – microscale – scale of pores (in the order of 10-6-

10-2 m)
 – mesoscale – scale of laboratory sample (in the or-

der of 10-2-100 m)
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 – macroscale – scale of typical blocks in numerical 
models of groundwater flow (in the order of 100-
102 m)

 – localscale – scale of an aquifer (in the order of 
102-103 m)

 – regionalscale – scale of series of aquifers/aqui-
tards (in the order of 103-106 m).
It should be noted that Bear (1979) did use the 

term macro-scale for the laboratory sample scale 
(here named mesoscale).

A basic question attributed to each scale is what 
physical variables are suitable to describe ground-
water flow in the subsoil at a given scale? And the 
question which immediately follows is what type of 
physical-mathematical equations and what param-
eters are suitable to describe relationships between 
these variables? There is also another question: how 
to pass from variables, equations and parameters of 
one scale to variables, equations and parameters of 
the next scale? When the next scale is higher, the 
procedure is called upscaling and, reversely, when 
the next scale is lower the procedure is called down-
scaling. The following section describes procedures 
that allow for upscaling groundwater flow models 
from microscale to mesoscale models and later from 
mesoscale to macroscale models. Knowing the tran-
sition rules from mesoscale to macroscale, a similar 
(not necessarily exactly the same) procedure may 
be applied in order to make a transition from mac
roscale to localscale and finally from localscale to 
regionalscale. Downscaling is not discussed here; 
only a brief reference is made to the latest results 
obtained by Trykozko (2010).

3. Groundwater flow equations 
at various hydrogeological scales 
and transitions between them

In this section groundwater flow equations in 
the three smallest scale models and corresponding 
two transition rules between them are described for 
setting the basis for transitions to higher-scale mod-
els.

Physics-based equations of groundwater flow in 
the porescale are the Navier-Stokes equations of hy-
drodynamics – the continuity equation and the mo-
mentum equation:

  
(1)

  
(2) 

where:
vx

, vy, vz – pore velocity components (m/s),
p – pressure in a pore (Pa),
ρ – water density in a pore (kg/m3),
μ, ξ – dynamic and volumetric viscosities in the 

pore space (kg/ms),
S – stress tensor (Pa); for a Newtonian fluid (e.g. 

water, air) , (I is the 
unit tensor).

The four equations – (1) and (2), contain seven 
variables vx

, vy, vz, p, ρ, μ, ξ. Even with the appro-
priate initial and boundary conditions there are too 
many variables in equations (1) and (2). Therefore, 
three constitutive equations representing phenom-
enological relationships between (some) variables 
are added:

where:
χo – temperature in a pore (ºC),
χ1 ,... – other variables, e.g. concentration of some 

chemical species in pore water (kg/m3) in order 
to equalise the number of unknowns and the 
number of equations and hence “close” the sys-
tem of equations.

3.1. From pore-scale to laboratory sample-
scale

In order to transit from micro-scale (pore-scale) 
to meso-scale (of laboratory sample-scale) the con-
cept of the Representative Elementary Volume 
(REV) – Uo, introduced by Bear (1979) can be uti-
lized to average physical variable Gα(x',t) specified 
within phase α in all pores contained in Uo. 

For fixed x (centre of REV) and fixed moment of 
time t new variable Gα(x,t) is defined as

  
(3)

where: |Uo|– volume of REV.
According to the Continuity Hypothesis the new 

variable Gα(x,t) – REV-averaged Gα(x',t), is at each 
moment in time continuous in space and does not 
depend of shape or volume of REV. The REV-aver-
aging removes two major obstacles faced by mod-
ellers when using the pore-scale models in real 
hydrogeological situations – it allows avoidance 
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of variables’ discontinuities on complex solid-fluid 
interfaces and the necessity of defining boundary 
conditions on these interfaces.

By applying the averaging procedure to conti-
nuity equation (1) in the micro-scale is obtained

 
(4)

which, after a number of transformations, turns 
into the well-known continuity equation for averaged 
variables in porous medium sample

  
(5)

where:
Θ – volume of water in a rock sample/volume of 

rock sample, i.e. soil moisture (-),
ρ – averaged density of water in REV (kg/m3),
v – averaged velocity of water in REV (m/s).

Similarly, by averaging the momentum equa-
tion (2) in micro-scale over REV one obtains

 

  
(6)

which, after a number of transformations, turns 
into the general form of the momentum equation for 
averaged variables in a porous medium sample

  
(7)

where:
F – total force acting on water per unit volume of 

rock sample (N/m3),
p – averaged pressure in water in REV (Pa).

For small water velocities (typical for flows in 
most of porous rocks) inertia effects are negligible 
and the left-hand side of equation (7) can be as-
sumed zero whereas the total force acting on the 
water per unit volume of rock sample (sheer force) 
can be considered proportional to the pore velocity 
of the water. In such a case equation (7) turns into 
Darcy’s Law (!)

  
(8)

where κ – coefficient of permeability (m2).

Hence, physics-based equations of groundwater 
flow in a laboratory sample-scale (or meso-scale) are rep-
resented by The Continuity Law (5) and the Darcy’s 
Law (8). In their standard form the two equations 
are expressed (for saturated flow and constant den-
sity of water) with the use of specific discharge q and 
piezometric head Φ

  
(5’)

  (8’)

Equations (5’) and (8’) are combined into the ul-
timate groundwater flow equation

  
(9)

where Ss – specific storage (1/m). 
It must be noted that for large water velocities 

in a porous medium (with Reynolds number about 
1) upscaling from the core to the sample scale leads 
to non-Darcian flow equation. This was demon-
strated by Peszyńska & Trykozko (2013), who used 
new voxel-based techniques for imaging of real 
porous media to support pore-to-sample up-scal-
ing. According to its very definition equation (9) 
is suitable for describing groundwater flow on the 
sample-scale for small flow velocities. However, 
the hydrogeological community uses this equation 
as a basis for numerical modelling of groundwater 
flow in flow in large hydrogeological systems of 
porous rocks, irrespective of the sheer fact that, ba-
sically, the equation and the systems belong to dif-
ferent scales! This discrepancy, which is overlooked 
by many modellers, can be (and is) repaired if prop-
er transition is applied. 

3.2. From meso-scale to macro-scale (scale 
of an aquifer)

It must be recalled that for the meso-scale typi-
cal dimensions of rock samples are in the range of 
0.1–1.0 m, whereas in macro-scale models describ-
ing groundwater flow in (numerical) model blocks 
the dimensions are in the order of 1–100 m. Typ-
ically, hundreds or thousands of such blocks are 
combined into one numerical model of an aquifer. 
Before composing blocks into one integrated mod-
el of an aquifer, modellers make an axiomatic as-
sumption that

“in the scale of each modelling block the relation be
tween the gradient of the piezometric head (as a cause) 
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and the specific discharge (as an effect) has a form identi
cal with the Darcy Law (8’) derived for a sample-scale". 

From this assumption it is clear that, in order 
to use 'the Darcy Law' on the 'block-scale' (mac-
ro-scale), block hydraulic coefficient Kb(x) needs to 
be found, which at any point in the space of block 
is consistent with this 'block Darcy Law', i.e. with

  
(10)

or, equivalently, with

  (10’)

where <φ> is the volume-averaged value of var-
iable φ within the block. 

The above volume averaging is correct if the grid 
volumes have rectangular shapes (i.e., the volumes 
are “real blocks”). However, if the grid volumes have 
different shapes, the physical volume (in m3) has to 
be replaced with a 'generalised volume' that incorpo-
rates the scale factors or the curvilinear co-ordinates. 
This was clearly demonstrated by Zijl & Trykozko 
(2001) for wedge-shaped volumes around a well. 
However, this is often overlooked by modellers.

Zijl (1993) and Nawalany (1999) showed that, in 
general, the block hydraulic coefficient Kb(x) has the 
following characteristics:
a) Kb(x) is not an arithmetic average of the hydraulic 

conductivities (at the sample-scale) in the block
b) Kb(x) depends of geometry of flow field
c) Kb(x) is a tensor even if the sample-scale hy-

draulic conductivity is a scalar variable
d) Kb(x) is not necessarily a symmetric tensor even 

if in the sample-scale hydraulic conductivity is 
a symmetric tensor.
For special cases when 

a) flow through the block is uniform 
b) hydraulic conductivity tensor is symmetric on 

the sample-scale,
the following deterministic formulas can be 

used for calculating corresponding scalar values of 
block hydraulic conductivity Kb(x) provided values 
of hydraulic conductivity k(x’) at the sample-scale 
are known:
 – for 1-dimensional flow in the x direction parallel 

to the layers

  
(11)

where V is a block volume (one grid block or 
a cluster of grid blocks),

 – for 1-dimensional flow in the z direction normal 
to the layers

  
(11’)

where V is a block volume,

 – for 2-dimensional flow with k1 and k2 in a cheq-
uerboard pattern

  (12)

see Warren and Price (1961) and Trykozko (2007),

 – for 2-dimensional flow 

  
(12’)

 – for 3-dimensional flow with k1 and k2 in a 'gener-
alised chequerboard' pattern

  (13)

see Trykozko (2007),

 – for 3-dimensional flow

  (13’).

Formulas (11), (11’), (12’) and (13’) were derived 
for special cases a) and b) (above) by Idelman & 
Dagan (1993a, b) and Idelman (1993). However, it 
was shown by Zijl (1993) and Nawalany (1999) that 
for general case, Kb(x) depends of solving the flow 
equation for the block-scale (10’) , i.e. it depends 
of boundary conditions imposed over the block 
boundaries. 

This leads to the idea of imposing two (in 2-D) or 
three (in 3-D) different sets of boundary conditions (i 
= 1,2) or (i = 1,2,3), respectively, at the block bounda-
ries and calculate (as a solution to the inverse prob-
lem) four elements of block hydraulic conductivity 
tensor Kb(x) from the corresponding four sets of al-
gebraic equations. The equations representing the 
block Darcy Law in the x- and y-directions for the 
assumed two sets of boundary conditions (i = 1,2),

  (14)

  (14’).
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The method of upscaling from sample-scale to 
block-scale as outlined above was extended to 
three-dimensional blocks by Zijl & Trykozko (1999), 
Trykozko & Zijl (2000) and Trykozko (2007). Their 
numerical experiments confirmed characteristics a) 
– d) of block tensor Kb(x). 

It must be noted that considerable progress has 
recently been made by Trykozko et al. (2008, 2009) 
and Trykozko (2010), who founded a new method 
for numerical upscaling and downscaling (down-
scaling is the transfer of coarse-scale conductivities 
to fine-scale conductivities). The idea is based on 
an inverse model applied in such a way that each 
grid volume is considered as a zone. Since con-
ventional inverse models such as e.g., PEST (Do-
herty, 2004), require a prohibitively large number 
of memory space and computation time, Trykozko 
et al. (2009) were amongst the first to develop an 
alternative inversion procedure in which a great 
many zones, including each grid block as a zone, 
do not pose any computational problem. Based on 
this idea, Trykozko (2010) solved the downscaling 
problem for a number of hypothetical situations 
(among which the 2-D chequerboard and the 3-D 
'generalised checkerboard' pattern. In order to de-
termine the error bounds, that author resolved 
these problems using both the Conformal-Nodal 
Finite Element Method (an upper bound method) 
and the Mixed Hybrid Finite Element Method (a 
lower bound method). One of the major conclu-
sions from her extensive numerical experiments on 
different scales used for modelling of groundwater 
flow is that numerical methods used to estimate the 
hydraulic conductivity pattern in finer-scale mod-
els do converge to the same values of the hydraulic 
conductivity tensor elements. This means that the 
proposed procedures are independent of their nu-
merical algorithms.

4. Summary

The two lowest scales used in describing 
groundwater flow in porous rocks differ essentially 
as to the state variables applicable to each scale. For 
pore-scale solutions the Navier-Stokes equations 
describing conservation of mass and momentum 
determine velocity, pressure and water density 
within each rock pore, whereas the solution for the 
sample scale equations (mass balance and Darcy’s 
Law) represent the REV-averaged velocity, pres-
sure and water density (specific discharge and pie-
zometric head in typical hydrogeological terminol-
ogy) within each rock sample having dimensions of 
order of 1 cm to 1 m. Although the pore-scale model 

has limited applicability to field hydrogeology it is 
still considered a valuable basis for theoretical re-
search, especially when sorption and chemical reac-
tions are added to the flow model. The sample-scale 
model, with a tradition of over 100 years, has been 
successfully used in thousands of applications and 
verified by properly designed experiments and ob-
servations. In the present note the transition from 
a pore-scale model to a sample-scale model accom-
plished through REV-averaging provides physical 
justification for the sample-model and explains to 
large degree why the model is so successful.

Still there are aspects of groundwater modelling 
that are in need of more careful explanation. At 
present, when numerical models of groundwater 
flow in an aquifer (or in subsoil basins consisting 
of a number of aquifers) are routinely applied in 
hydrogeology, extrapolation of sample-scale model 
parameters to macro-scale parameters has become 
an issue because it might affect the reliability of the 
models. The solutions to this problem presented 
here are based on the assumption that macro-scale 
groundwater flow equations have essentially the 
same form as the sample-scale models, i.e., they 
obey the mass balanced equation and Darcy’s Law. 
As a result, upscaling of hydraulic conductivity 
from the sample-scale to the volume-scale, often 
simplified to the block-scale (block as rectangular 
volume) has to follow a specific procedure as de-
scribed here. Although some progress has been 
made recently, an interesting question still remains: 
whether conventional and recently developed tools 
for parameter identification (inverse models) are 
compatible with the volume averaging procedure 
described in the present paper, or not.

As the procedure of transition from sample-scale 
to block-scale is physically well based, a similar 
approach can be applied to upscaling block-scale 
models to local-scale models and likewise when up-
scaling local-scale models to regional-scale models.
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