
1. Introduction

The Lar igneous complex is a unique example of 
potassic igneous rocks with different textures and 
unusual compositions that are associated with Cu-
Mo mineralisation. The geology, geochemistry and 
petrology of this complex have been the subject of 
a few studies (Chance, 1981; Camp & Griffis, 1982; 
Tirrul et al., 1983; Bagheri & Bakhshi, 2001; Gha-
fari-Bijar, 2009; Farokh-Nezhad, 2011; Soltanian, 
2013). According to Chance (1981) the Lar igneous 
complex is a late Oligocene, low-Ti post-tectonic ig-
neous complex with features of a collapsed caldera. 
Camp & Griffis (1982) defined it as a late Oligocene 
alkaline volcanic-plutonic complex, while Bagheri 
& Bakhshi (2001) thought that it was an igneous 
ring dyke complex that formed as a result of calde-
ra collapse, in relation to shoshonitic lamprophyric 
magmatism.

Despite previous studies, information on the 
geochemistry and petrology of the Lar igneous 
complex was not presented and our knowledge of 
the geology and geochemistry of this complex is 
still very poor. The Lar igneous complex consists 
of a wide variety of basic, intermediate and felsic 
rocks, but intermediate rocks predominate in this 
complex. Therefore, the present paper focuses on 
the petrological and geochemical characteristics 
of intermediate igneous rocks of the Lar igneous 
complex. We use whole-rock geochemistry of these 
rocks to discuss these geochemical characteristics, 
tectonic setting and petrogenesis.

2. Geological setting

The Lar igneous complex is located 20 km north-
east of the city of Zahedan in the Sistan suture zone, 
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southeastern Iran (Fig. 1A, B). Iran has a complex 
geology with several tectono-stratigraphical zones 
(Fig. 1B). The Sistan suture zone is known as a rem-
nant of a Cretaceous oceanic basin that extends as 
a N–S trending belt over more than 700 km (Tirrul 
et al., 1983). This zone is located between the Lut 
block in the west and the Afghan block in the east. 
The Sistan suture zone was divided into the Neh 
and Ratuk accretionary prisms and the Sefidabeh 
forearc basin (Camp and Griffis, 1982).

The Neh and Ratuk accretionary prisms are 
characterised by strongly deformed and faulted 
masses of ophiolite-melange, Upper Cretaceous 
to Eocene phyllite and Paleogene terrigenous-ma-
rine sedimentary rocks. In contrast, the Sefidabeh 
forearc basin contains a minor ophiolite-melange 
and has a coherent stratigraphy. Based on Camp & 
Griffis (1982) and Tirrul et al. (1983), the Sistan su-

ture zone is characterised by the following features: 
(A) the Upper Cretaceous ophiolite-melange mass-
es (the oldest igneous rocks in this area) occur in 
all parts of the Sistan suture zone, especially in the 
western part, and are composed of ultramafic, maf-
ic and sedimentary rocks; (B) flysch-type rocks, the 
most dominant and thickest rocks in the Sistan su-
ture zone, unconformably cover the ophiolite-mel-
ange masses, and (C) non-ophiolitic igneous rocks 
that are different in age, composition and genesis 
and can be divided on the basis of age as follows: 
(1) Eocene calc-alkaline rocks that are attributed to 
the subduction of the Lut block beneath the Afghan 
block (Camp & Griffis, 1982). (2) Eocene to lower 
Oligocene Zahedan calc-alkaline I, rare S- and hy-
brid-type granitoids that are related to subduction 
and collision events in the area (Camp & Griffis, 
1982; Boomeri et al., 2005; Sadeghian et al., 2005; 

Fig. 1. A – Lar igneous complex location in the Sistan and Baluchestan province; B – Main tectono-stratigraphical units 
of Iran (Stöcklin, 1968); C – Geological units of the Lar igneous complex. UDMB = Urumieh-Dokhtar Magmatic Belt; 
JZ = Jazmorian; SSZ = Sistan Suture Zone
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Sadeghian & Valizadeh, 2007; Rahnama-Rad et al., 
2008; Ghasemi et al., 2010; Moradi et al., 2014; Mo-
hammadi et al., 2016). (3) Oligocene to middle Mio-
cene alkaline and calc-alkaline igneous rocks (sho-
shonite) such as the Lar igneous complex (Camp 
& Griffis, 1982). The alkaline and high-K calc-alka-
line(shoshonitic) magmatism is closely related to 
major transcurrent faults in the eastern part. These 
faults are important post-collisional structural fea-
tures in the Sistan suture zone (Camp & Griffis, 
1982; Walker & Jackson, 2004). (4) Quaternary vol-
canic rocks like Mount Taftan that are related to the 
Makran active subduction of the Arabian Plate un-
der the Makran accretionary prism and the Sistan 
suture zone (Farhoudi & Karig, 1977).

The Lar igneous complex is elliptical in shape 
and hosted by Upper Cretaceous, Paleocene and 
Eocene flysch-type rocks such as siliceous shale, 
sandstone, siltstone and minor limestone (Fig. 1C). 
Its longer dimension parallels the Zahedan fault 
system in the western and southwestern parts (Fig. 
1C). Near the contact, the hosted sedimentary rocks 
were metamorphosed into hornfels and skarn-type 
rocks (Fig. 1C). The main body of the Lar igne-
ous complex includes grey to dark grey volcanic 
rocks such as lava and pyroclastic breccias which 
were intruded by non-mineralised and mineralised 
plutonic rocks such as stock and dykes (Figs 1C, 
2A–B). Re-Os dating of two molybdenite samples 
from two different drill holes has yielded ages of 
29.72 ± 0.11 and 31.95 ± 0.11 Ma, suggesting that 
the mineralisation system was active for at least 
2.2 myr (Boomeri et al., 2019) and showing that all 
above-mentioned igneous rocks are older than 32 
Ma. Structurally, there are at least two fault and 
fracture systems in the Lar igneous complex (Fig. 
1C). The first is the main fault system with a NW–
SE trend, parallel to the Zahedan fault. The second 
fault system with a NE–SW trend is younger than 
the first one.

3. Material and methods

In the present study, mapping was done by using 
numerous field survey and satellite images for 
harsh areas; in addition, sampling was done on the 
basis of variety, texture and mineralogy of igneous 
rocks and in consideration of standard conditions. 
A total of 200 samples were collected from different 
rock types and standard thin sections were made. 
Thin sections were studied using a polarised micro-
scope for petrographical and mineralogical descrip-
tions at the University of Sistan and Baluchestan in 
Iran.

Major, trace and rare elements were determined 
by LiBO2 fusion and measured by XRF techniques, 
and trace elements, including 14 rare earth ele-
ments, were obtained by LiBO2 fusion and meas-
ured by ICP-MS techniques at the ACTLABS lab-
oratory in Canada. The selected samples include 
K-rich intermediate intrusions (n = 6), K-rich inter-
mediate dykes (n = 3) and K-rich intermediate vol-
canic rocks (n =6) (Table 2).

4. Petrography

4.1. Volcanic rocks

The volcanic rocks are mainly grey and green in col-
our and porphyritic in texture with at least 50 per 
cent phenocrysts and occur as lava and pyroclastic 
rocks. As far as composition is concerned, they in-
clude andesites, trachyandesites, latites, trachytes, 
pyroclastics, leucitites, dacites and basalts (Table 1).

4.1.1. Andesites
Andesites are porphyritic in texture. Plagioclase 
is the most abundant phenocryst, being euhedral 
with zoning and polysynthetic twinning, and 0.5–2 
mm in size, partially broken and sericitised. Clino-
pyroxene is euhedral to subhedral and variable in 
size. Amphibole is subhedral, green to brown in 
colour and strongly pleochroic. It is rarely found in 
the groundmass, but is usually observed as a phe-
nocryst. In addition, where the amount of K-feld-
spar increases, the rock can be referred to as tra-
chyandesite.

4.1.2. Latites
Latites with porphyritic and cataclastic textures 
have a compositional range of latite, latite-trachyte, 
latite-andesite and quartz-bearing latite-andesite. 
Quartz amounts to 5 per cent in the quartz-bear-
ing latite-andesite. K-feldspar (sanidine) and plagi-
oclase are subhedral, 0.4–1 mm in size and are par-
tially altered to sericite. Plagioclase has zoning and 
polysynthetic twinning. Sanidine is characterised 
by only Carlsbad twinning. Biotite is subhedral to 
anhedral, 0.4–1.5 mm in size, brown in colour and 
strongly pleochroic, being partially altered to chlo-
rite.

4.1.3. Trachytes
Trachytes typically comprise trachyte and alka-
li-feldspar trachyte that show similar characteris-
tics, even though the latter is richer in K-feldspar 
(Fig. 2C). These rocks are porphyritic to trachytic in 
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texture. The phenocrysts of K-feldspar (sanidine), 
biotite, clinopyroxene and amphibole are embed-
ded in a fine-grained groundmass of sanidine mi-
crolites. Sanidine is euhedral to subhedral, and 
variable in size (up to 5 mm) and partially altered 
to sericite and kaolinite. Biotite is euhedral, 0.3–0.7 
mm in size, brownish green in colour and occasion-
ally altered to chlorite. Clinopyroxene is euhedral 
to subhedral, 0.4–0.8 mm in size and green in col-
our. Amphibole is subhedral, 0.3–0.7 mm in size 
and also green in colour.

4.1.4. Pyroclastics
The pyroclastic rocks are typically composed of tuff, 
latite-tuff, andesite-tuff, trachyandesite-tuff and 
lithic-tuff. K-feldspar is subhedral and of variable 
size; in some cases it is altered to sericite and kaolin-
ite. Plagioclase has a variable size and polysynthetic 
twinning. Clinopyroxene is subhedral and also var-
iable in size. Amphibole is hornblende in composi-
tion, green in colour and variable in size. Biotite is 
from other ferro-magnesian minerals in pyroclastic 
rocks and occurs in three groups. The first group is 
rippling, brown in colour and variable in size. The 
second group occurs as assemblage rims around 
clinopyroxene and opaques and the third group 

of biotite is finer than the other two, occurring and 
poikilitically in other minerals such as K-feldspar.

4.1.5. Leucitites
Leucitite is porphyritic in texture. The leucite phe-
nocrysts are coarse grained (0.4–2 mm) and form 
pseudo-leucite when replaced by orthoclase and 
nepheline. Clinopyroxene is euhedral to subhedral, 
0.3–2 mm in size with a green rim of amphibole and 
biotite.

4.1.6. Dacites
Dacite is predominantly porphyritic in texture. 
Plagioclase is subhedral to euhedral with polysyn-
thetic twinning that in some cases is sericitised and 
hosts opaque veinlets. Biotite is thin, brown in col-
our and strongly pleochroic. Amphibole is subhe-
dral, brown to green and partially altered to biotite. 
The quartz occurs as rounded phenocrysts and finer 
grains in the groundmass.

4.1.7. Basalts
Basalt is porphyritic in texture. Plagioclase is eu-
hedral to subhedral, variable in size and partially 
altered to calcite and sericite. Clinopyroxene is eu-
hedral to subhedral and variable in size.

Fig. 2. Field photographs of: A –Volcanic and plutonic rocks; B –Intermediate dyke; cross-polarised light photomicro-
graphs of: C – trachyte; D – porphyritic syenite; E – monzonite



 Petrology and origin of the Lar igneous complex of the Sistan suture zone, Iran 55

4.2. Plutonic rocks

The plutonic rocks of the Lar igneous complex oc-
cur mainly as syenitic to monzonitic stocks and 
dykes (Table 1).

4.2.1. Syenites
Syenites are granular, porphyritic and occasionally 
cataclastic, poikilitic, micro-granular, equigranular 
and layered in texture (Fig. 2D). Based on variation 
in mineral content and textures, syenites typically 
have a range of alkali feldspar syenite, quartz al-
kali feldspar syenite, quartz syenite, leucosyenite, 
micro-syenite, micro-leucosyenite and Mela-syenite 
(shonkinite).

In petrographical studies, K-feldspar is mainly 
orthoclase and occasionally microcline in composi-
tion, tabular and subhedral to anhedral, variable in 
size (from 1 to up to 30 mm) and poikilitic, perthit-
ic and microperthitic in texture. Perthites show a 
patchy intergrowth of orthoclase and albite. Some 
of the K-feldspar phenocrysts poikilitically contain 
inclusions of biotite, sphene, apatite, plagioclase, 
pyroxene and opaques. In some cases, the poikilit-
ic texture was formed at the margin of K-feldspar. 

K-feldspar is occasionally altered to sericite or clay 
minerals and sometimes has veinlets of secondary 
minerals. Plagioclase is tabular to lath and euhedral 
to subhedral, 0.5–2 mm in size, with oscillatory zon-
ing and polysynthetic twinning that in some cases 
has a rim of orthoclase or is altered to sericite.

Clinopyroxene is subhedral to euhedral, 0.3–0.8 
mm in size and partially to totally replaced by sec-
ondary amphibole, biotite, chlorite and epidote. 
Clinopyroxene is subhedral to euhedral, 0.2–4 mm 
in size, light green in colour, poikilitic in texture 
and occasionally has twinning which is partially 
altered. Amphibole is subhedral to euhedral, 0.6 
mm in size, green in colour, strongly pleochroic; 
in some cases it has a rim of ilmenite. The primary 
biotites are subhedral to euhedral and occasionally 
bent, 0.3–4 mm in size, light to dark brown in col-
our, strongly pleochroic and with inclusions of apa-
tite, sphene and opaques. Some biotites are formed 
around Fe-Ti oxides, amphibole and clinopyroxene. 
Finer biotites are found as inclusions in other min-
erals such as feldspars. Olivine is subhedral, >0.4 
mm in size and strong in interferences, showing 
numerous fractures. Olivine shows a reaction rim 
of mica.

Table 1. Mineralogy of Lar igneous complex rocks

Ro
ck

s Volcanic Plutonic

Andesites Latites Trachytes Pyroclas-
tics Leucitites Dacites Basalts Syenites Mon-

zonites

M
in

er
al

og
y

Pl = 30% Pl = 20% Kfs = 30% Kfs, Pl, Bt, 
Cpx, Amp, 

Ap, Ep, 
Qz, Ser, 

Kln, lithic 
fragments

Lct/Psl = 
30%

Pl = 
30–40%

Pl = 30% Kfs = 70% Kfs = 49%

Amp = 
40–50%

Kfs = 20% Pl = 10% Cpx, Amp 
= 15–25%

Kfs = 5% Cpx = 20% Pl = 25% Pl = 39%

Ap, Bt, 
Opq = 5%

Bt, Cpx, 
Opq = 10%

Bt, Cpx, 
Amp = 

10%

Iron ox-
ides ≅ 40%

Qz = 
4–10%

±Ol, Lct, 
Ep, Opq, 

Ser

Qz ≤ 5% Qz ≤ 5%

±Chl ±Ap, Opq, 
Ser, Kln, 

Chl

±Ap, Opq, 
Bt

Bt = 2–10% ±Cpx, Ol, 
Amp,  Bt, 
Spn, Ap, 
Zrn, spo-
radic Qz, 
Ep, Cal, 
Kln, Chl, 
Ser, Opq

Bt, Cpx, 
Amp = 

10%

Amp = 
2–5%

±Spn, Ap, 
Opq, Chl, 

Ser
±Ap, Opq, 

Ser

Pl – Plagioclase; Amp – Amphibole; Ap – Apatite; Bt – Biotite; Opq – Opaque mineral; Kfs – K-feldspar; Cpx – Clino-
pyroxene; Lct – Leucite; Psl – Pseudo-leucite; Qz – Quartz; Ol – Olivine; Ep – Epidote; Spn – Sphene; Zrn – Zircon; 
Cal – Calcite; Kln – Kaolinite; Chl – Chlorite; Ser – Sericite.
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Apatite is almost prismatic and 0.4–0.8 mm in 
size, whereas finer apatite occurs as inclusions in 
other minerals. Sphene is subhedral to euhedral, 
0.2–0.4 mm in size and high in relief. The igneous 
opaques are mainly magnetite, ilmenite and rutile, 
while hydrothermal opaques are mainly sulphide 
minerals such as pyrite, chalcopyrite, molybdenite 
and bornite.

4.2.2. Monzonites
Monzonitic rocks are typically composed of mon-
zonite and quartz monzonite. In general, syenite 
and monzonite show similar characteristics, even 
though the latter has higher proportions of plagi-
oclase and is grey in colour. The monzonitic rocks 
are granular, porphyritic and occasionally cata-
clastic in texture (Fig. 2E). Quartz monzonite has 
higher proportions of quartz, while K-feldspar and 
plagioclase occur in approximately equal amounts. 
Porphyritic monzonite is more heterogeneous and 
silicified. K-feldspar is orthoclase in composition, 
subhedral to anhedral, variable in size and poikilitic 
and perthitic in texture. K-feldspar poikilitically en-
closes plagioclase, biotite, sphene and opaques. Pla-
gioclase is subhedral to euhedral, variable in size, 
poikilitic in texture with polysynthetic twinning 
and zoning that is occasionally altered to sericite.

The primary biotite is subhedral to euhedral, 
0.4–4 mm in size, light to dark brown in colour and 
occasionally altered to chlorite. These biotites have 
poikilitic inclusions of plagioclase, sphene, apatite 
and opaques. Some biotites are finer in size and 
lighter in colour, having formed around and inside 
clinopyroxene, amphibole and opaques, and also 
occur in fractures. Clinopyroxene is subhedral to 

euhedral, 0.2–0.7 mm in size and replaced by chlo-
rite. Amphibole is subhedral to euhedral, 0.2–0.7 
mm in size, green in colour, strongly pleochroic that 
is occasionally replaced by biotite and chlorite. The 
monzonite hosts veins and veinlets of malachite, 
iron oxides, sulphide minerals, quartz and phyllo-
silicates.

5. Whole rock geochemistry

5.1.	Chemical	classification

According to the geochemical classifications of 
Middlemost (1985) and Pearce (1996), the Lar plu-
tonic rocks are monzonite, syenite and foid syenite 
and the volcanic rocks are alkalibasalt, andesite,ba-
saltic andesite, trachyte and trachyandesite (Fig. 3).

5.2. Major and trace element chemistry

The whole rock major and trace elements content of 
representative igneous rocks is presented in Table 
2, and some of these are plotted in Harker diagrams 
vs SiO2 (Fig. 4). In Harker diagrams, the contents of 
Al2O3, CaO and MgO are highly variable in inter-
mediate rocks. The contents of K2O, P2O5 and Fe2O3, 
V and Sr decrease with increasing SiO2. Leucitite 
has lower SiO2 and higher K2O and P2O5, whereas 
trachytes have higher SiO2 and Al2O3. SiO2 contents 
in intermediate K-rich dykes are higher than in in-
termediate K-rich stocks.

Fig. 3. Geochemical plots of the Lar igneous complex rocks in: A –Total alkali vs. silica (Middlemost, 1985); B – Nb/Y 
vs. Zr/Ti (modified from Pearce, 1996)
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The Lar igneous complex chondrite-normalised 
REE patterns are characterised by an enrichment 
of LREE relative to HREE (Fig. 5A). The ratio of 
LREE/HREE is high in the Lar igneous complex 
rocks. Intermediate K-rich intrusions, intermediate 
K-rich volcanic rocks and intermediate K-rich dykes 
have slightly steep slopes in LREEs, mild slopes in 
MREEs and constant slopes in HREEs (Table 2; Fig. 
5A).

A small, yet significant Eu anomaly, or none at 
all, is apparent in intermediate K-rich intrusions, 
intermediate K-rich volcanic rocks and interme-
diate K-rich dykes (Eu/Eu* = 0.72–1.10, 0.73–0.91, 
0.70–0.85). Although the intermediate samples con-

tain high amounts of K-feldspar and plagioclase, 
which usually have positive Eu anomalies (Taylor 
& McLennan, 1985), these might have been com-
pensated by relatively high contents of minerals 
with negative Eu anomalies, such as amphibole.

The Lar igneous complex N-MORB-normalised 
multi-elements diagrams are characterised mostly 
by an enrichment in K, Rb, Th and a depletion of Ti, 
Zr, Hf, Y and Yb (Fig. 5B). These features are com-
mon in arc settings and are ascribed mostly to sub-
duction enrichment and fluid metasomatism pro-
cesses in subduction zones (Pearce et al., 1995) and/
or can be explained by the retention of these ele-
ments in the residual mantle source during partial 

Fig. 4. Selected Harker variation diagrams of major (wt. %) and trace (ppm) elements vs. SiO2 (wt. %) for the Lar igneous 
complex rocks. Graphic signs the same as in Fig. 3

Fig. 5. A – Chondrite-normalised REE patterns (Nakamura, 1974); B – MORB-normalised REE patterns (Pearce, 1983) of 
the Lar igneous complex rocks. Graphic signs the same as in Fig. 3
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Table 2. Representative major (wt. %) and trace (ppm) element analyses of the Lar igneous complex K-rich intermediate 
rocks

Rocks Plutonic VolcanicDykes Intrusions
SiO2 61.24 61.69 61.20 59.22 58.45 58.52 56.15 57.39 57.14 51.66 60.19 59.24 57.77 61.56 60.93
Al2O3 17.03 15.07 16.46 17.93 17.35 16.28 15.44 16.54 17.42 15.84 16.81 16.62 17.93 17.21 15.88
Fe2O3 4.21 3.92 4.23 3.63 5.33 4.21 5.11 4.27 4.14 5.46 4.41 4.93 4.17 3.59 4.82
MnO 0.04 0.04 0.07 0.04 0.08 0.04 0.02 0.03 0.08 0.06 0.05 0.09 0.04 0.05 0.08
MgO 1.85 2.34 1.57 1.61 2.78 1.62 2.10 1.13 1.80 2.92 1.86 2.75 <1 1.43 2.40
CaO 2.74 2.69 2.90 2.21 3.42 3.12 2.19 2.23 2.61 3.99 2.42 3.89 3.57 2.04 4.18
Na2O 5.08 3.10 5.01 3.92 4.78 4.51 4.73 4.52 4.20 2.28 5.07 4.51 3.27 5.04 6.13
K2O 6.02 7.01 6.05 8.05 5.37 8.55 9.43 7.71 7.04 14.08 6.11 5.42 9.94 6.16 3.77
TiO2 0.41 0.44 0.47 0.43 0.60 0.74 0.29 0.55 0.47 0.87 0.43 0.49 0.38 0.36 0.61
P2O5 0.46 0.51 0.39 0.52 0.69 0.71 0.98 0.56 0.56 1.12 0.44 0.53 0.55 0.34 0.22
LOI 0.79 2.91 2.11 1.37 1.72 1.66 1.90 2.70 2.71 1.61 0.99 0.75 2.34 0.83 1.39
Total 99.87 99.71 100.46 98.93 100.57 99.96 98.34 97.63 98.17 99.89 98.78 99.23 99.96 98.61 100.41
Sc 8 10 9 5 11 6.7 10.4 8 6 9.2 8 11 4.7 7 13
V 177 203 162 195 229 144 248 187 220 216 177 196 172 147 143
Ba 749 954 476 1152 794 400 744 757 740 1836 485 849 663 355 396
Sr 608 501 468 1151 689 398.2 557.3 314.3 878 911.2 431 706 616.3 386 507
Y 17 15 19 12 18 14.2 14.2 12.4 12.6 12.2 17 16 9.8 17 27
Zr 211 147 218 112 192 36 85 29 117 30 232 174 78 230 197
Cr 30 30 40 40 30 21 32 32 40 111 30 110 22 20 90
Co 9 11 9 9 13 8.2 10.2 5.9 11 14.2 10 13 6.1 7 11
Ni 20 20 30 20 30 15 18 12 30 70 20 30 12 20 40
Rb 201 304 167 253 138 170 173 232 210 351 210 176 197 213 117
Nb 13 8 12 10 14 17.2 14.6 16.1 14 11.9 15 11 14.3 13 14
La 29.5 22 31.4 25.5 32.9 28 39 16 31 28 29.4 29.1 25 29.3 29.3
Ce 49.7 40.5 55 42.1 57.8 47 59 31 50 47 48.6 50.2 43 49.2 58.8
Pr 4.86 4.17 5.38 4.15 5.84 3.42 3.38 1.93 4.6 3.93 4.79 4.98 2.37 4.75 6.38
Nd 17.1 16.5 20.2 14.8 21.6 19 18.7 14.7 16 22 16.8 18.6 15 16 24.6
Sm 3.6 3.3 4.2 2.8 4.4 3.75 3.61 3.14 3.4 4.64 3.2 3.8 2.89 3.2 5.3
Eu 0.82 0.84 0.85 0.89 1.02 0.86 0.93 0.73 0.84 1.25 0.76 0.99 0.8 0.78 1.14
Gd 3.2 2.8 3.3 2.2 3.7 3.39 3.18 2.84 3.8 3.84 2.8 3.3 2.53 2.7 4.4
Tb 0.4 0.4 0.5 0.3 0.5 0.41 0.36 0.33 0.4 0.43 0.4 0.4 0.27 0.4 0.7
Dy 2.4 2.1 3 1.6 2.8 3.77 3.47 3.41 2.1 3.65 2.5 2.5 3.01 2.4 4.3
Ho 0.5 0.4 0.6 0.3 0.5 – – – 0.4 – 0.5 0.5 – 0.5 0.8
Er 1.5 1.3 1.7 0.9 1.6 1.81 1.54 1.53 1.6 1.52 1.4 1.5 1.21 1.5 2.5
Tm 0.24 0.18 0.27 0.13 0.26 0.2 0.16 0.17 0.21 0.15 0.21 0.24 0.12 0.25 0.38
Yb 1.6 1.2 1.9 0.9 1.8 1.7 2.3 1.5 1.2 1.3 1.6 1.6 0.9 1.9 2.6
Lu 0.27 0.2 0.29 0.14 0.28 0.2 0.15 0.16 0.17 0.14 0.28 0.28 0.12 0.29 0.38
Hf 4.4 2.8 4.5 2 3.8 1.24 1.43 1.11 4 1.28 4.5 3.6 2.08 4.7 4.2
Ta 0.8 0.5 0.6 0.5 0.8 0.8 0.67 0.72 0.8 0.65 0.9 0.7 0.6 1 0.9
Pb 21 9 19 27 16 18 19 18 24 30 9 58 37 17 10
Th 25.3 17.7 19.2 14.1 21.6 24.69 14.68 15.62 12 13.01 27.3 21.3 15.53 31.6 17.4
U 6.2 6 5.8 4.7 5.4 5.8 4.1 3.9 3.8 4 7.7 7.2 4.4 9 5.1
Eu/Eu* 0.74 0.85 0.70 1.10 0.78 0.74 0.84 0.75 0.72 0.91 0.78 0.86 0.91 0.82 0.73
Ba/Rb 3.73 3.14 2.85 4.55 5.75 2.35 4.30 3.26 3.52 5.23 2.31 4.82 3.37 1.67 3.38
Rb/Sr 0.33 0.61 0.36 0.22 0.20 0.43 0.31 0.74 0.24 0.39 0.49 0.25 0.32 0.55 0.23
Sr/Y 35.76 33.40 24.63 95.92 38.28 28.04 39.25 25.35 69.68 74.69 25.35 44.13 62.89 22.71 18.78
Zr/Y 12.41 9.80 11.47 9.33 10.67 2.54 5.99 2.34 9.29 2.46 13.65 10.88 7.96 13.53 7.30
K2O/Na2O 1.19 2.26 1.21 2.05 1.12 1.90 1.99 1.71 1.68 6.18 1.21 1.20 3.04 1.22 0.62
Nb/Y 0.76 0.53 0.63 0.83 0.78 1.21 1.03 1.30 1.11 0.98 0.88 0.69 1.46 0.76 0.52
Nb/Th 0.51 0.45 0.63 0.71 0.65 0.70 0.99 1.03 1.17 0.91 0.55 0.52 0.92 0.41 0.80
Nb/U 2.10 1.33 2.07 2.13 2.59 2.97 3.56 4.13 3.68 2.98 1.95 1.53 3.25 1.44 2.75
Nb/La 0.44 0.36 0.38 0.39 0.43 0.61 0.37 1.01 0.45 0.43 0.51 0.38 0.57 0.44 0.48
La/Nb 2.27 2.75 2.62 2.55 2.35 1.63 2.67 0.99 2.21 2.35 1.96 2.65 1.75 2.25 2.09
La/Ta 36.88 44.00 52.33 51.00 41.13 35.00 58.21 22.22 38.75 43.08 32.67 41.57 41.67 29.30 32.56
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melting (Pearce, 1982; Wilson, 1989). In addition, 
these depletion and enrichment trends with respect 
to MORB may also be explained as reflecting melt 
generation from a source that is depleted by previ-
ous extraction and then enriched in subduction-mo-
bile incompatible trace elements (Ali, 2012). Finally, 
the geochemical signatures mentioned may be at-
tributed to involvement of fluids that were trans-
ported into the mantle wedge from the subduction 
slab (Leeman et al., 1990; Baker, 1994; Grove et al., 
2002). However, variable partial melting rates of the 
MORB source mantle can play a major role where 
the above-mentioned geochemical signatures are 
concerned (Hughes, 1990).

The strong negative Ti anomaly (Fig. 5B) may 
be due to the early crystallisation and fractionation 
of Fe-Ti oxides, which buffers Ti concentration or 
caused earlier removal of Fe-Ti phases such as il-
menite and titanomagnetite (Obeid, 2006; Ozgenc 
& Ilbeyli, 2009). In addition, this anomaly can also 
be due to retention of Ti in rutile (Ali, 2012). On 
the other hand, some elements like P show varia-
ble trends in the Lar igneous complex rocks due to 
changes in apatite content (Fig. 5).

6. Discussion

6.1. Magmatic series

Based on geochemical studies by Camp & Griffis 
(1982), the Lar igneous complex is mainly alkaline. 
Other studies have asserted that the igneous rocks 
in this complex were linked to alkaline-ultrapo-
tassic magmatism (e.g., Farokh-Nezhad, 2011), ul-
trapotassic magmatism (Ghafari-Bijar, 2009) and 
alkaline-potassic-ultrapotassic magmatism (Solta-
nian, 2013). In contrast to previous studies in which 
the Lar igneous complex was introduced mainly as 
alkaline in the magmatic series, the present study 
shows that Lar samples are mainly shoshonitic and 
high-K calc-alkaline (Fig. 6A, B). The Lar igneous 
complex rocks mainly have high values of K (>2 
wt. per cent) that are in accordance with shosho-
nitic rocks. The potassic character of the igneous 
rocks in the Lar igneous complex area could also 
be proved by K2O values that exceed those of Na2O 
(Table 2), which classify them mainly as shoshonitic 
(Fig. 6A). In the diagram proposed by Liégeois et al. 
(1998), the Lar igneous complex igneous rocks plot 

Fig. 6. Compositional characteristics of the Lar igneous complex rocks in various discrimination diagrams. A – Plot of 
Co vs. Th (Hastie et al., 2007); B – Sliding normalisation diagram for shoshonitic and alkaline rocks (Liégeois et al., 
1998). Tectonic discrimination diagrams for potassic rocks (Müller et al., 1992) of: C – TiO2/Al2O3 vs. Zr/Al2O3; D 
– Zr vs. Y; E – La-TiO2-Hf; F – Nb*50-Zr*3-Ce/P2O5. IOP = Initial oceanic arc potassic rocks, LOP = Late oceanic arc 
potassic rocks, CAP = Continental arc potassic rocks, PAP = Post-collisional arc potassic rocks. Graphic signs the 
same as in Fig. 3
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in the shoshonitic field, characterised by high SNY 
(= mean [Rb-U-Th-Ta]NYTS) values and low SNX (= 
mean [Zr-Ce-Sm-Y-Yb]NYTS) values (Fig. 6B).

6.2. Geotectonic environment

Shoshonitic igneous rocks occur in a wide range of 
tectonic settings such as continental arcs, oceanic 
arcs, post-collisional settings and within-plate set-
tings (Müller et al., 1992). The Lar igneous complex 
rocks have high concentrations of LILE, intermedi-
ate LREE and low HFSE (Table 2). These geochem-
ical features are more closely similar to rocks that 
are associated with arc-related settings. Tectonic 
discrimination diagrams (Fig. 6C, D) also show 
that the Lar igneous complex rocks are arc related. 
In oceanic island arcs (initial oceanic arcs and late 
oceanic arcs) potassic igneous rocks generally have 
the lowest concentrations of LILE, LREE and HFSE 
(e.g., potassic igneous rocks derived in initial oce-
anic arcs have <42 ppm La, <33 ppm Ce). In con-
trast,the continental and post-collisional potassic 
igneous rocks are enriched in Zr, Hf, Nb and LREE; 
they also have higher Sr and Ba contents, higher K/
Na, Nb/Y (>0.55) and higher LREE/HREE ratios 
than potassic igneous rocks of oceanic arcs (Müller 
& Groves, 2016). Tectonic discrimination diagrams 
also show that the Lar igneous complex rocks fall 
within the post-collisional field (Fig. 6E, F). Accord-
ing to Camp & Griffis (1982), the age of the Lar ig-
neous complex is younger than the time of collision 
(33 Ma) of the Afghan and Lut blocks in the south-
eastern part of Iran and indicates a post-collisional 
tectonic setting for the Lar igneous complex mag-
matism. Barbarin (1999) and Bonin (2004) believed 
that the high-K calc alkaline granitoids could also 
have formed in passing from the compressional to 
tensional regimes and could be classified into the 
post-collisional groups of granitoids. The Lar ig-
neous complex formed at the edge of the Zahedan 
strike-slip fault that has a length of 150 kilometres.

6.3. Source characteristics

There is a general consensus that potassic magmas 
cannot be derived by partial melting of normal man-
tle peridotite and instead require heterogeneous 
mantle sources that are metasomatically enriched 
in LILE and LREE (Edgar, 1987; Foley & Peccerillo, 
1992; Guo et al., 2013; Kuritani et al., 2013; Tan et al., 
2013; Bucholz et al., 2014; Aghazadeh et al., 2015; 
Yang et al., 2015). In general, K-rich magmatism in a 
post-collisional tectonic setting is generated mainly 

from enriched mantle sources and/or metasoma-
tised lithospheric mantle and includes shoshonitic 
lavas, lamprophyres and K-rich granitoids (Bonin 
et al., 1998; Vaughan & Sacrow, 2003; Seifert, 2008).

Following Sun and McDonough (1989), the 
Zr/Y ratio can separate depleted and enriched 
sources as higher Zr/Y values (>2.46) are typical 
of an enriched source, which is the case for the Lar 
igneous complex rocks that show an average Zr/Y 
of 8.64. Furthermore, it is suggested that potassic 
rocks with high K2O, Th and Sr/Y, and low Cr, Ni, 
Y, MgO and HREE contents can be generated from 
partial melting of thickened lower crust and litho-
sphere (Chung et al., 2003; Hou et al., 2004; Hu et 
al.,2017; Zhang et al., 2017).

On the other hand, high contents of K2O in the 
rocks studied require potassic phases (K-feldspars 
or phlogopite) in the source rocks. A weak or ab-
sent Eu anomaly, showing positive correlation with 
Sr, indicates that source magma fractionation was 
driven by feldspars, under relatively reduced condi-
tions, enabling feldspars to be a sink for Eu. Furman 
& Graham (1999) indicated that melts produced 
from phlogopite had Rb/Sr>0.1 and Ba/Rb<15, 
while those formed from an amphibole-bearing 
source had Rb/Sr< 0.06 and Ba/Rb>15. Rb/Sr ra-
tios of the rocks studied range from 0.2 to 0.74 and 
their Ba/Rb ratios are less than 15. Based on these 
ratios it can be suggested that amphibole is also a 
rare phase in the source. Therefore, the main phase 
of the source rocks was phlogopite.

N-MORB-normalised multi-element diagrams of 
the Lar igneous complex rocks show a LREE(s) and 
LILE enrichment relative to HREE and HFSE, respec-
tively, and Nb and Ti negative anomalies that point 
to involvement of a subduction-related environment 
that likely was inherited from a mantle source that 
had been metasomatised by melts/fluids released 
from a subducting slab, or modified by subducted 
sediments and associated fluids/melts (Foley et al., 
1987; Altherr et al.,2008; Boari et al., 2009) (Fig. 5). 
Dehydration of a subducted slab could produce and 
release complex fluids to metasomatise the upper 
mantle wedge (lithospheric mantle wedge) (Tatsumi 
et al., 1986; Peacock, 1993; Arculus, 1994). Hydration 
and metasomatism of the mantle wedge lowered the 
mantle solidus temperature to the point at which 
melting begins (Tatsumi et al., 1986; Peacock, 1993; 
Arculus, 1994). Strike-slip faults can channel man-
tle materials and also generate deep-lithospheric 
heat. They can create a space for deep-seated mag-
mas that make their way upwards along strike-slip 
faults, as a result of decompression melting (Pirajno, 
2010). The product of such source melting (phlogo-
pite-rich source) is a K-rich melt. This melt is distin-
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guished from MORB by its higher H2O, LILE and 
lower Ti, Nb and Ta contents, because certain high 
field strength elements, such as Ti, Nb, Hf, Y and Yb, 
are not mobilised by this metasomatic process and 
remain in source rocks of the slab, while large ion 
lithophile elements (LILE), such as K, Cs and Ba, are 
mobilised in the melt produced (Tatsumi et al., 1986; 
Peacock, 1993; Arculus, 1994). As mentioned earlier, 
the Lar igneous complex is related to a post-colli-
sional tectonic setting and the behaviour of the trace 
elements mentioned indicates incorporation of sub-
duction-related materials from previous subduction 
in the mantle source region. Moreover, these char-
acteristics have also been reported for magmas that 
are derived from partial melting of a metasomatised 
mantle in a post-collisional setting (Jiang et al., 2012; 
Yang et al., 2012; Pang et al., 2013).

6.4. Evolutionary processes of magmatism in 
the Lar igneous complex

According to Glenn (2004) the#mg, Ni, Cr, and SiO2 
in primary magma are >0.7, 1,400 to 1,500ppm, 

<1,000ppm, and <50 per cent, respectively. The 
representative samples of the Lar igneous com-
plex rocks show Ni, Cr and SiO2 ranges from 12 to 
70ppm, 20 to 111ppm and 51.66 to 61.69wt. per cent, 
respectively. The values mentioned demonstrate 
that the Lar igneous complex did not directly form 
from a primary mantle magma.

Figures 7A and B show strong positive corre-
lations between U-Th and Ba- Ba/Yb which indi-
cate the importance of fractional crystallisation in 
most of the Lar igneous complex rocks. On the oth-
er hand, according to Sun & McDonough (1989), 
Nb/Th, Nb/U and Nb/La in the primary mantle 
are 8.4, 34 and 1.04, respectively. The Lar igneous 
complex rocks have an average of 0.73, 2.56 and 
0.48 for Nb/Th, Nb/U and Nb/La, respectively, 
i.e., values that are lower than those of the prima-
ry mantle and in accordance with crustal contam-
ination. The ratios of La/Nb>1.5 and La/Ta> 22 
also indicate the role of crustal contamination in 
magmatic evaluation (Hart et al., 1989); in the Lar 
igneous complex these rocks are 2.22 and 40.02, re-
spectively. The process mentioned can also be seen 
in Figures 7C and D.

Fig. 7. Plots of: A – Th vs. U (Rollinson, 1993); B – Ba vs. Ba/Yb (Rollinson, 1993); C – Ce vs. La; D – Yb vs. Y. FC = frac-
tional crystallisation, AFC = assimilation-fractional crystallisation. Graphic signs the same as in Fig. 3
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7. Conclusions

Paleocene to Eocene flysch-type rocks were intrud-
ed by the Lar igneous complex about 32 myr ago. 
The Lar igneous complex rocks are classified into 
several types as follows: 1) intermediate K-rich vol-
canic rocks with a compositional range of trachyte, 
latite and andesite, 2) intermediate K-rich stocks 
and dykes with syenitic to monzonitic composition.

The Lar igneous complex rocks are K-rich, main-
ly shoshonitic in the magmatic series and derived 
from a post-collisional tectonic setting. They are 
characterised by an enrichment of LREE relative to 
HREE and LILE relative to HFSE, negative anoma-
lies of Ti, Ba and Nb and positive anomalies of Rb 
and Th.

The K-rich shoshonitic igneous rocks were like-
ly formed from magmas that were derived mainly 
from partial melting of a phlogopite-rich enriched 
lithospheric mantle. The arc-like geochemical signa-
ture of igneous rocks was probably inherited from 
an enriched mantle source that had been metaso-
matised by melts/fluids released from a subducting 
slab, or modified by subducted sediments and as-
sociated fluids/melts during a previous subduction 
process.

The intermediate plutonic and volcanic shosho-
nitic rocks probably crystallised from an similar, 
with a small degree of fractionation magma. This 
magma probably formed as a result of high-rate 
partial melting of a K-rich source.

Some of the Lar igneous complex rocks display 
high K2O, Th and Sr/Y ratios with low Y and HREE 
contents, implying that they were derived from 
partial melting of thickened lithosphere.
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